La bioréceptivité de matériaux cimentaires dans l’eau de mer : mécanismes, facteurs agissants et conséquences

Mahmoud HAYEK, Marie SALGUES, Frédéric HABOUZIT, Sandrine BAYLE, Jean-Claude SOUCHE, Klartjee DE WEERDT, Sylvain PIOCH

Résumé


Le béton est un matériau composite complexe, dont les différents composants lui permettent de s’adapter à des usages très différents grâce à ses caractéristiques physicochimiques adaptables à des cahiers des charges très variés. Ses performances mécaniques, sa durabilité exceptionnelle et son coût modéré justifient l’utilisation large de ce matériau dans la construction des ouvrages maritimes. Immergé dans l’environnement marin, le béton est susceptible d’être colonisé par les différents organismes marins qui se regroupent ensemble sur la surface sous leur forme sessile nommée biofilm/biofouling. Cette colonisation forme le point de départ de différentes interactions biologiques pouvant avoir lieu entre le matériau et son environnement marin (biodéterioration/bioprotection). Le cycle et la vitesse de colonisation vont dépendre des conditions environnementales comme de la nature du substrat (composition, propriétés physico-chimiques du support…) ainsi que des propriétés de microorganismes concernés. Dans le but d’étudier la bioréceptivité du béton dans l’environnement marin, cet article se focalise successivement sur les paramètres du milieu marin qui influent sur sa colonisation et sur les organismes concernés. Les caractéristiques intrinsèques du béton qui sont susceptibles d’influencer la bioréceptivité et les mécanismes conduisant à la formation du biofilm et à la biocolonisation des bétons sont décrits. Enfin, le sujet de l’effet positif (bioprotection) ou négatif (biodéterioration) des organismes vivants sur le béton est évoqué.

 

Bioreceptivity of cementitious materials in seawater: mechanisms, acting factors and consequences

 

Abstract:

Concrete is a complex composite material; whose different components allow it to adapt to very different uses due to its physicochemical characteristics adaptable to very varied conditions. Its mechanical performance, exceptional durability and moderate cost explain the wide use of this material in the construction of marine structures. Submerged in the marine environment, the concrete will be colonized by various marine organisms that gather together on the surface in their sessile form called biofilm/biofouling. This colonization is the starting point for different biological interactions that may occur between the material and its marine environment (biodeterioration/bioprotection). The cycle and the rate of colonization will depend on environmental conditions such as the nature of the substrate (composition, physicochemical properties of the support, etc.) as well as the properties of the concerned microorganisms. In order to study the bioreceptivity of concrete in the marine environment, this paper focuses successively on the characteristics of the marine environment that affect the colonization of the concrete and the concerned organisms. Then, the intrinsic parameters of concrete that can influence bioreceptivity are listed and described. The same goes for the mechanisms leading to the biofilm formation and the biocolonisation of concretes. Finally, the subject of the positive (bioprotection) or negative (biodeterioration) effect of the biofilm formation on concrete is discussed.

Key words:

Concrete, Marine environment, Biocolonization, Biofilm/Biofouling, Bioreceptivity/Biodeterioration.


Mots-clés


Béton; Milieu marin; Biocolonisation; Biofilm/biofouling; Bioréceptivité/Bioprotection.

Texte intégral :

PDF

Références


AMMAR Y., SWAILES D., BRIDGENS B., CHEN J. (2015). Influence of surface roughness on the initial formation of biofilm. Surface and Coatings Technology, Vol. 284, pp 410-416. CrossRef

BELLON-FONTAINE M.N., BENEZECH T., BOUTROUX K., HERMON C. (2016). Conception hygiénique de matériel et nettoyage-désinfection, Coll. Sciences et techniques agroalimentaires. Lavoisier collection Tec & Doc, 224 p.

BERTRON A. (2014). Understanding interactions between cementitious materials and microorganisms: a key to sustainable and safe concrete structures in various contexts. Materials and Structures, Vol. 47, pp 1787–1806. CrossRef

BOEUF G. (2016). La biodiversité dans l’océan. Planet-Vie. https://planet vie.ens.fr/thematiques/themes-transversaux/la-biodiversite-dans-l-ocean

BRIAN-JAISSON F., ORTALO-MAGNE A., GUENTAS-DOMBROWSKY L., ARMOUGOM F., BLACHE Y., MOLMERET M. (2014). Identification of bacterial strains isolated from the Mediterranean sea exhibiting different abilities of biofilm formation. Microbial Ecology, Vol. 68, pp 94–110. CrossRef

CALLEN J.-C., PERASSO R. (2005). Biologie cellulaire - Des molécules aux organismes. Collection Sciences de la vie, Dunod, 2ème édition, 512 p.

CANLER J.P., PERRET J.-M., DUCHENE P. (2011). Aide au diagnostic des stations d’épuration par l’observation microscopique des: boues activées. Editions Quae, 160 p.

CARPENTIER B., CERF O. (1993). Biofilms and their consequences, with particular reference to hygiene in the food industry. Journal of Applied Bacteriology, Vol. 75, pp 499–511. CrossRef

CHLAYON T., IWANAMI M., CHIJIWA N. (2020). Impacts from concrete microstructure and surface on the settlement of sessile organisms affecting chloride attack. Construction and Building Materials, Vol. 239, pp 117863. CrossRef

COOMBES M.A., NAYLOR L.A., VILES H.A., THOMPSON, R.C. (2013). Bioprotection and disturbance: Seaweed, microclimatic stability and conditions for mechanical weathering in the intertidal zone. Geomorphology, Vol. 202, pp 4–14. CrossRef

COOMBES M.A., VILES H.A., NAYLOR L.A., LA MARCA E.C. (2017). Cool barnacles: Do common biogenic structures enhance or retard rates of deterioration of intertidal rocks and concrete? Science Total Environment, Vol. 580, pp 1034–1045. CrossRef

CWALINA B. (2008). Biodeterioration of concrete. Architecture civil engineering environment, Vol. 4, pp 133–140.

DANG H., LOVELL C.R. (2015). Microbial surface colonization and biofilm development in marine environments. Microbiology and Molecular Biology Reviews Vol. 80, pp 91–138. CrossRef

DE BELIE N. (2010). Microorganisms versus stony materials: a love–hate relationship. Materials and Structures, Vol. 43, pp 1191–1202. CrossRef

DEJOYE-TANZI C. (2013). Eco-extraction et analyse de lipides de micro-algues pour la production d’algo-carburant. Thèse Université d’Avignon et des Pays de Vaucluse, 177 p.

DE WEERDT K., JUSTNES H., GEIKER M.R. (2014). Changes in the phase assemblage of concrete exposed to sea water. Cement and Concrete Composites, Vol. 47, pp 53–63. CrossRef

DOBRETSOV S., TEPLITSKI M., BAYER M., GUNASEKERA S., PROKSCH P., PAUL V.J. (2011). Inhibition of marine biofouling by bacterial quorum sensing inhibitors. Biofouling, Vol. 27, pp 893–905. CrossRef

DONLAN R.M., COSTERTON J.W. (2002). Biofilms: Survival Mechanisms of Clinically Relevant Microorganisms. Clinical Microbiology Reviews, Vol. 15, pp 167–193. CrossRef

DUBOSC A., ESCADEILLAS G., BLANC P.J. (2001). Characterization of biological stains on external concrete walls and influence of concrete as underlying material. Cement and Concrete Research, Vol. 31, pp 1613–1617. CrossRef

DUNNE W.M. (2002). Bacterial Adhesion: Seen Any Good Biofilms Lately? Clinical Microbiology Reviews, Vol. 15, pp 155–166. CrossRef

DÜRR S., THOMASON J.C. (2009). Biofouling. Wiley on line edition, 429 p. CrossRef

EL-NAGGAR M.Y., WANGER G., LEUNG K.M., YUZVINSKY T.D., SOUTHAM G., YANG J., LAU W.M, NEALSON K.H., GORBY Y.A. (2010). Electrical transport along bacterial nanowires from Shewanella oneidensis MR-1. Proceedings of the National Academy of Sciences, Vol. 107, pp 18127–18131. CrossRef

ESCADEILLAS G., BERTRON A., BLANC P., DUBOSC, A. (2007). Accelerated testing of biological stain growth on external concrete walls. Part 1: Development of the growth tests. Materials and Structures, Vol. 40, pp 1061–1071. CrossRef

FERRERO M.A. (2018). Colonisation et biodétérioration des bétons en milieu marin : mise au point d’essais en laboratoire et influence de la composition chimique du matériau cimentaire. Thèse Université de Caen Normandie, 223 p.

GAYLARDE C.C., GAYLARDE P.M. (2005). A comparative study of the major microbial biomass of biofilms on exteriors of buildings in Europe and Latin America. International Biodeterioration & Biodegradation, Vol. 55, pp 131–139. CrossRef

GIANNANTONIO D.J., KURTH J.C., KURTIS K.E., SOBECKY P.A. (2009). Effects of concrete properties and nutrients on fungal colonization and fouling. International Biodeterioration & Biodegradation, Vol. 63, pp 252–259. CrossRef

HA D.G., O’TOOLE G.A. (2015). c-di-GMP and its Effects on Biofilm Formation and Dispersion: a Pseudomonas Aeruginosa Review. Microbiology Spectrum, Vol. 3, pp 1-19. CrossRef

HAMIDOUCHE N., TETAH S. (2017). Contribution à l’étude de la flore algale en particulier les cyanobactéries de la lagune Tamelaht et du lac Mézaia. Rapport de Master, Université de Béjaia, 68 p.

HARAS D. (2005). Biofilms et altérations des matériaux : de l’analyse du phénomène aux stratégies de prévention. Matériaux & Techniques, Vol. 93, pp s.27-s.41. CrossRef

HARSHADA M.K., DESAI P.M.M., GUPTA D.A.K. (2017). Deterioration of concrete in marine structure. Imperial Journal of Interdisciplinary Research (IJIR), Vol. 3(8), pp 198-209.

HAYEK M., BARAQUET C., LAMI R., BLACHE Y., MOLMERET M. (2019). The marine bacterium shewanella woodyi produces C8-HSL to regulate bioluminescence. Microbial Ecology, Vol. 79, pp 865–881. CrossRef

JOSHI S., GOYAL S., REDDY M.S. (2018). Influence of nutrient components of media on structural properties of concrete during biocementation. Construction and Building Materials, Vol. 158, pp 601–613. CrossRef

KAPLAN J.B. (2010). Biofilm dispersal: mechanisms, clinical implications, and potential therapeutic uses. Journal of Dental Research, Vol. 89, pp 205–218. CrossRef

KARUNASAGAR I., OTTA S.K., KARUNASAGAR I. (1996). Biofilm formation by Vibrio harveyi on surfaces. Vol. 140, pp 241–245. CrossRef

KERR A., BEVERIDGE C.M., COWLING M.J., HODGKIESS T., PARR A.C.S., SMITH M.J. (1999). Some physical factors affecting the accumulation of biofouling. Journal of the Marine Biological Association of the United Kingdom, Vol. 79, pp 357–359. CrossRef

LAWRENCE J.R., SCHARF B., PACKROFF G., NEU T.R. (2002). Microscale evaluation of the effects of grazing by invertebrates with contrasting feeding modes on river biofilm architecture and composition. Microbial Ecology, Vol. 44, pp 199–207. CrossRef

LORS C., FEUGEAS F., TRIBOLLET B. (2017). Interactions Matériaux-Microorganismes: Bétons et métaux plus résistants à la biodétérioration. EDP Sciences

LV J., MAO J., BA H. (2015). Influence of marine microorganisms on the permeability and microstructure of mortar. Construction and Building Materials, Vol. 77, pp 33–40. CrossRef

MANSO S., AGUADO A. (2016). The use of bio-receptive concrete as a new typology of living wall systems. Matériaux & Techniques, Vol. 104, n°5, article number 502, 8 p. CrossRef

MILLER A.Z., SANMARTÍN P., PEREIRA-PARDO L., DIONÍSIO A., SAIZ-JIMENEZ C., MACEDO M.F., PRIETO B. (2012). Bioreceptivity of building stones: A review. Science of The Total Environment, Vol. 426, pp 1–12. CrossRef

NGUYEN V.H. (2005). Couplage dégradation chimique - comportement en compression du béton. Thèse Ecole des Ponts ParisTech, Paris, 220 p.

NUHOGLU Y., OGUZ E., USLU H., OZBEK A., IPEKOGLU B., OCAK I., HASENEKOGLU I. (2006). The accelerating effects of the microorganisms on biodeterioration of stone monuments under air pollution and continental-cold climatic conditions in Erzurum, Turkey. Science of The Total Environment, Vol. 364, pp 272–283. CrossRef

O’TOOLE G., KAPLAN H.B., KOLTER R. (2000). Biofilm formation as microbial development. Annual Review of Microbiology, Vol. 54, pp 49–79. CrossRef

PARKER C.D. (1945). The corrosion of concrete: The isolation of a species of bacterium associated with the corrosion of concrete exposed to atmospheres containing hydrogen sulphide. Australian Journal of Experimental Biology and Medical Science, Vol. 23, pp 81–90. CrossRef

PASQUERON DE FOMMERVAULT O. (2016). Dynamique des nutriments en Méditerranée: des campagnes océanographiques aux flotteurs Bio-Argo. Thèse Université Pierre et Marie Curie - Paris VI, Paris, 196 p.

PENCREAC’H G., DEVOS M., POISSON L., HERAULT J., LOISEAU C., ERGAN F. (2004). Les microalgues marines: source alternative d’acide eicosapentaènoïque (EPA) et d’acide docosahexaènoïque (DHA). Oléagineux, Corps gras, Lipides, Vol. 11, pp 118–122. CrossRef

PERKOL-FINKEL S., SELLA I. (2014). Ecologically active concrete for coastal and marine infrastructure: innovative matrices and designs. From Sea to Shore - Meeting the Challenges of the Sea, ICE publishing, pp 1139–1149.

PIOCH S., RELINI G., SOUCHE J. C., STIVE M. J. F., DE MONBRISON D., NASSIF S., SIMARD F., ALLEMAND D., SAUSSOL P., SPIELER R., KILFOYLE K. (2018). Enhancing eco-engineering of coastal infrastructure with eco-design: Moving from mitigation to integration, Ecological Engineering. Vol 120, pp 574–584. CrossRef

PLANETOSCOPE (2020). Panetoscope - Statistiques : Production mondiale de béton. Consultation du 28 février 2020. https://www.planetoscope.com/matieres-premieres/1374-production-mondiale-de-beton.html

POLI A., FINORE I., ROMANO I., GIOIELLO A., LAMA L., NICOLAUS B. (2017). Microbial diversity in extreme marine habitats and their biomolecules. Microorganisms. Vol. 5, pp 2–25. CrossRef

ROBERT R., CHRETIENNOT-DINET M. - J., KAAS R., MARTIN-JEZEQUEL V., MOAL J., LE COZ J.-R., NICOLAS J.-L., BERNARD E., CONNAN J.-P., LE DEAN L., LE GOURRIEREC G., LEROY B., QUERE C. (2004). Amélioration des productions phytoplanctoniques en écloserie de mollusques : caractérisation des microalgues fourrage. Rapport IFREMER, DRV/RA/RST/LPI/2004-05, 144 p.

ROBERTS D.J., NICA D., ZUO G., DAVIS J.L. (2002). Quantifying microbially induced deterioration of concrete: initial studies. International Biodeterioration & Biodegradation, Vol. 49, pp 227–234. CrossRef

SALTA M., WHARTON J.A., BLACHE Y., STOKES K.R., BRIAND J.F. (2013). Marine biofilms on artificial surfaces: structure and dynamics. Environmental Microbiology, Vol. 15, pp 2879–2893. CrossRef

SANTHANAM M., OTIENO M. (2016). Deterioration of concrete in the marine environment. Marine Concrete Structures, pp 137–149. CrossRef

SHI X., ZHU X. (2009). Biofilm formation and food safety in food industries. Trends in Food Science & Technology, Vol. 20, pp 407–413. CrossRef

SIGG L., BEHRA P., STUMM W. (2001). Chimie des milieux aquatiques. Dunod édition, cinquième édition, 576 p.

SILVA M.R., NAIK T.R. (2013). Biodeterioration of concrete structures in coastal zone. Third International Conference on Sustainable Construction Materials and Technologies, August 18 – August 21 2013, Kyoto Research Park, Kyoto, Japan Materials Research, Vol. 12, 8 p.

SOLEIMANI S., ORMECI B., ISGOR O.B. (2013). Growth and characterization of Escherichia coli DH5α biofilm on concrete surfaces as a protective layer against microbiologically influenced concrete deterioration (MICD). Applied microbiology and biotechnology, Vol, pp 1093–1102. CrossRef

SOSA M., PÉREZ-LÓPEZ T., REYES J., CORVO F., CAMACHO-CHAB R., QUINTANA P., AGUILAR D. (2011). Influence of the Marine Environment on Reinforced Concrete Degradation Depending on Exposure Conditions. International Journal of Electrochemical Science, Vol. 6, pp 6300–6318.

SOUCHE J.C., PIOCH S., SALGUES M., DE WEERDT K., AGOSTINI A., HAYEK M. (2019). De la conception à l’éco-conception des ouvrages maritimes : intégrer la nature au projet d’aménagement maritime. Revue Paralia, Vol. 12, pp 1.1–1.26. CrossRef

SPERANZA G., GOTTARDI G., PEDERZOLLI C., LUNELLI L., CANTERI R., PASQUARDINI L., CARLI E., LUI A., MANIGLIO D., BRUGNARA M., ANDERLE M. (2004). Role of chemical interactions in bacterial adhesion to polymer surfaces. Biomaterials, Vol. 25, pp 2029–2037. CrossRef

TANG H., WANG A., LIANG X., CAO T., SALLEY S.O., MCALLISTER J.P., NG K.Y.S. (2006). Effect of surface proteins on Staphylococcus Epidermidis adhesion and colonization on silicone. Colloids and Surfaces B: Biointerfaces, Vol. 51, pp 16–24. CrossRef

TEUGHELS W., ASSCHE N.V., SLIEPEN I., QUIRYNEN M. (2006). Effect of material characteristics and/or surface topography on biofilm development. Clinical Oral Implants Research, Vol. 17, pp 68–81. CrossRef

TRAN T.H., GOVIN A., GUYONNET R., GROSSEAU P., LORS C., DAMIDOT D., et al. (2014). Influence of the intrinsic characteristics of mortars on their biofouling by pigmented organisms: Comparison between laboratory and field-scale experiments. International Biodeterioration and Biodegradation, Vol. 86, pp 334–342. CrossRef

VICHOT A., OLLIVIER J. (2008). La durabilité des bétons. École française du béton Paris : Presses de l'École nationale des ponts et chaussées, 844 p.

VISHWAKARMA V., GEORGE R.P., RAMACHANDRAN D., ANANDKUMAR B., MUDALI U.K. (2014). Studies of detailed Biofilm characterization on fly ash concrete in comparison with normal and superplasticizer concrete in seawater environments. Environmental Technology, Vol. 35, pp 42–51. CrossRef

WHITMAN W.B., COLEMAN D.C., WIEBE W.J. (1998). Prokaryotes: The unseen majority. Proceedings of the National Academy of Sciences, Vol. 95, pp 6578–6583. CrossRef

WOOD T.L., GUHA R., TANG L., GEITNER M., KUMAR M., WOOD T.K. (2016). Living biofouling-resistant membranes as a model for the beneficial use of engineered biofilms. PNAS, Vol. 113, pp E2802–E2811. CrossRef

YUAN H., DANGLA P., CHATELLIER P., CHAUSSADENT T. (2015). Degradation modeling of concrete submitted to biogenic acid attack. Cement and Concrete Research, Vol. 70, pp 29–38. CrossRef




DOI: http://dx.doi.org/10.5150/revue-paralia.2020.n03

Renvois

  • Il n'y a présentement aucun renvoi.


 

_ISSN 1760-8716_

© Editions Paralia CFL