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Abstract: 
Many long-term numerical databases (LTND) are distributed by research centers from 
various countries (like Previmer, NCEP, ..). These LTND usually provide integrated 
wave parameters which enable the computation of operational and also extreme 
statistics thanks to their duration (generally between 10 and 30 years).  
Although these LTND are validated in several places, it is rarely the case at your 
location of interest and therefore data extracted from a LTND doesn't necessarily offer 
the best results at this point. Nevertheless, it is possible to improve the results of these 
LTND in a "post-processing" step, ie without re-running the numerical simulations with 
data assimilation. 
This paper will present different techniques of Measure-Correlate-Predict (MCP) to 
improve the results of these LTND using in-situ data. Some of these techniques are then 
implemented to modify a long-term wave database in northern Bay of Biscay in France. 
The effect of this change is evaluated in terms of significant wave heights and wave 
peak period, and also in term of theoretical wave energy potential calculated using the 
deep waters and JONSWAP approximations, by comparing the obtained results with in-
situ measurements. 
A discussion is then opened on the way of propagating these local corrections and on 
the way of making it on larger spatial extents and on different physical types of LTND 
(wave, current, wind), thanks to the Metocean Analytics software (http://www. 
openocean.fr/en/metocean-analytics/). 
Keywords: Measure-Correlate-Predict techniques, Wave datasets, In situ 
measurements, Wave potential. 
 
1. Introduction 
The cost of the electrical energy production of a marine renewable energy farm, 
composed of tidal turbines, offshore wind turbines or wave energy converters, depends 
on its annual power output as well as on the investment, financing and operating and 
maintenance costs (MANWELL et al., 2009; NELSON, 2009; SPERA, 1994; 
SHERMAN et al., 1983; HAU, 2005). The annual power output of a device has a strong 
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influence on this specific cost. In order to get a reliable prediction of this annual power 
output, knowledge of the inter-annual variability of the resource characteristics is 
needed, and so on long-term dataset are essential, but often unavailable. 
The use of statistical methods, commonly known as Measure-Correlate-Predict (MCP) 
techniques, is used as a way of getting round this lack of long-term data. MCP 
algorithms are used to assess the long-term resource at target sites using short-term 
(one- or two-year) on-site data and concurrent data at nearby reference locations (which 
also have long-term data). The accuracy of long-term predictions obtained using MCP 
methods is subject to the availability of a nearby in-situ measurement, the used 
correction methodology, and the dependence of this correction on physical features such 
as the bathymetry, the topography, the distance between reference stations, and the type 
of local climate regime. 
As mentioned in Zhang (ZHANG et al.,2014), a wide variety of MCP techniques have 
been reported in the literature, mainly to estimate wind resource, such as: linear 
regression (VELASQUEZ et al., 2011; PEREA et al., 2011), variance ratio (PEREA et 
al., 2011; CARTA & VELASQUEZ, 2011), Weibull scale (CARTA & VELASQUEZ, 
2011), artificial neural networks (ANNs) (HAU, 2005; VELASQUEZ et al., 2011; 
MOHANDES et al., 1998) or support vector regression (SVR) (MOHANDES et al., 
2004; ZHAO et al., 2010). 
This paper focuses on simple MCP techniques (linear, exponential and polynomial 
regressions) as a first step applied to wave datasets: significant wave heights (Hs), wave 
peak periods (Tp) and wave potential using a deep water and a JONSWAP 
approximation (WPJA). 
Zhang (ZHANG et al.,2014) develops an hybrid MCP technique for wind resource 
assessment at target farm site, by using data from multiple reference stations. The 
weight of each reference station was determined based on the distance and on the 
elevation differences between the target farm site and each reference station. In our 
paper, the elevation of the input buoys (Candhis Belle-Ile and Ile d’Yeu) and of the 
target site (Candhis Four) is the same (sea surface), thus, the weight is determined based 
on the distance between the target site and each buoy. However, wave systems (defined 
by a range in direction and frequency) can significantly differ between two relatively 
close locations, due to modifications of wave propagation driven by local bathymetry 
changes or the presence of the islands. Moreover, wave systems may not propagate in 
the same way, resulting in different relationships between wave parameters at the 
reference location and at the target location. That is why, in a second step, wave 
parameters (Hs and Tp) are broken down into peak direction classes in order to establish 
MCP relationships specific to wave directional systems. 
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2. Datasets and methodology 
 
2.1 Long Term Numerical Dataset (LTND) 
The wave long-term numerical dataset used in the present paper comes from a 
numerical simulation performed by Ifremer. This database has been performed using the 
numerical wave model WaveWatchIII® (WW3) version 4.09 (BOUDIERE et al., 
2013). WW3 is a third generation spectral wave model based on the conservation 
equation for the density of wave action. The propagation scheme used in this 
configuration is an explicit propagation for unstructured grid (ROLAND, 2008; 
ROLAND et al., 2009). The use of unstructured meshes permits to adapt the grid 
resolution at different scales in the same computational domain, from the coastal zone 
(refined mesh of ~ 200m) to offshore (mesh ~ 10km). The time step is about 1-hour. It 
extends from 43.29°N to 52.90°N and from 8.54°W to 4.72°E and covers a period from 
1994 to 2012. The setup used in this configuration for the generation and dissipation of 
waves (ARDHUIN et al., 2009; ARDHUIN et al., 2010) is the one that was developed 
during the research project IOWAGA (Integrated Ocean Waves for Geophysical 
Applications and —other) and tested in preparation mode in the context of operational 
demonstrator Previmer (LECORNU et al., 2008). The evolution and nonlinear wave 
interactions are modeled by the DIA method (Discrete Interaction Approximation) 
(HASSELMANN et al., 1985). The simulated sea-state conditions were performed on a 
high-resolution bathymetry stretching from southern North Sea to the northern coast of 
Spain, covering the entire continental shelf of the Bay of Biscay. The bathymetry was 
obtained using data from the SHOM (Service Hydrographique et Océanographique de la 
Marine) for the coastline and measurement campaigns conducted by IFREMER and 
SHOM for the entire field: 100m and 500m DTM (LOUBRIEU et al., 2008). 
The wind fields used to force the model are from CFSR reanalysis (Climate Forecast 
System Reanalysis, (SAHA et al., 2010) conducted in 2010 by the NCEP (National 
Centers for Environmental Prediction). These wind fields were re-analyzed over the 
period 1979-2009. Their spatial resolution varies from 0.25° at the equator up to 0.5° at 
higher latitudes. Currents, water levels and storm surges were calculated using the 
hydrodynamic code MARS2D (Model for Applications at Regional Scale). MARS2D is 
a model developed by IFREMER (LAZURE & DUMAS, 2008) and based on shallow 
water equations. It consists of seven nested models whose resolution differs according 
to rank (ranks 0, 1 and 2). Data from Météo-France were used as meteorological forcing 
for the model MARS2D. Ranks 0 and 1 are forced using data from meteorological 
model ARPEGE 0.5° (COURTIER et al., 1994; COURTIER et al., 1991) with a 6-
hours time step. Models of rank 2, with higher resolution, are forced with data from the 
meteorological model AROME 0.025° (SEITY et al., 2011) with a 1-hour time step. 
Input current and water level data was derived from an atlas of harmonic components. A 
replay of tide data was performed over one year (2008) and an analysis of harmonic 
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components of the tide for each of the seven models too. Tidal currents and levels can 
thus be evaluated for each year over the entire field. They are updated every 30 minutes 
and are interpolated onto the wave model mesh. A large set of in situ data from various 
sources, including ocean surveys like data from the Cetmef Candhis buoys network and 
Météo-France buoys along the French coast, was used and statistics show a good 
agreement overall with the observations (BOUDIERE et al., 2013). 
 
2.2 Measurements 
In-situ measurement datasets used in the present paper come from the Cetmef Candhis 
buoys network, distributed through the Copernicus (European Earth Observation 
Program) program. Belle-Ile and Ile d'Yeu buoys are used in this work as input 
parameters of the different MCP techniques (see section methodology for more details), 
and Four buoy is used in order to validate the results as it is located between the two 
other previous buoys (figure 1). The main characteristics of these in-situ datasets are 
summed up in the table 1. 
 

 
Figure 1. Reference and target sites in the North of Bay of Biscay (France). 
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Table 1. location covered period, available variables and distance to HOMERE grid 
point for each measurement buoy. 

Buoy location period variables Distance to 

grid point 

Belle-Ile 3.285°W 

47.285°N 

01/01/2012 

21/05/2014 

Hs, Tp, Dp 250 m 

Ile d’Yeu 2.288°W 

46.833°N 

04/07/2005 

30/11/2015 

Hs 350 m 

Four 2.787°W 

47.239°N 

18/01/2010 

14/12/2014 

Hs, Tp, Dp 270 m 

 
2.3 Methodology 
Figure 2 illustrates the overall structure of the proposed methodology, which includes: 
- MCP (MCP regression are listed below) between in-situ measurements (Belle-Ile or 

Belle-Ile and Ile d’Yeu) and LTND at same locations. 
- Weights determination based on the distance between the target site (Four) and each 

reference site (Belle-Ile and Ile d’Yeu). 
- Computation of modified wave parameters time series and wave potential time series, 

and comparison with in-situ measurements at target site (Four). 
 

 
Figure 2. MCP methods between measurements and LTND at reference sites (left) and 

computation of the final LTND at target site (right). 
 
Several MCP techniques are proposed, classified by step: STEP 1 corresponds to a 
linear regression between in-situ measurements and LTND at one reference site (Belle-
Ile), STEP 2 corresponds to a linear regression between in-situ measurements and 
LTND at two reference sites (Belle-Ile and Ile-D’Yeu, same technique than STEP 1), 
STEP 3 corresponds to an exponential regression between in-situ measurements and 
LTND at these two reference sites and STEP 4 corresponds to a polynomial regression 
(order of 3). 
For example, figure 3 presents the STEP 1 regression for Hs (left) and STEP 4 
regression for Tp (right) at Belle-Ile location. 
Using the modified Hs and Tp time series, the wave potential is then estimated at the 
target site. The wave potential can be approximated, in deep waters, by the relation 
(CORNETT, 2008): 
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P0 = (ρg2/64π) * Hs
2 * Te 

where Te is the energy wave period. 
Since Te is unavailable in a large number of public wave databases or in-situ 
measurement databases, it must be estimated using other available variables. Thus, Te is 
generally approximated as: Te = α Tp with the coefficient α depending on the shape of 
the wave spectrum; a conservative value of 0.9 is commonly used and corresponds to a 
standard JONSWAP spectrum with a peak factor γ = 3.3. In the following, this value is 
used to compute wave potential (named WPJA: Wave Potential with JONSWAP 
Approximation) at the target site (Four buoy). The previous assumptions have no impact 
on the results since the article methodology only deals with comparisons. 
 

 
Figure 3. scatter plots of Hs (left, STEP 1) and Tp (right, STEP 4) at Belle-Ile location. 
 
4. Results 
 
4.1 Modified time series 
The following table shows the scores (bias and normalized root mean square error) of 
the original LTND and the 4 MCP-modified LTND at the target site (Four buoy), in 
terms of wave parameters.  
 
Table 1. Hs and Tp scores of original and modified LTNDs at the target site. 

 

Steps 

Hs 

BIAS [m]    |   NRMSE [%] 

Tp 

BIAS [s]    |   NRMSE [%] 

Original  0.21   |   3.82 1.03   |   7.86 

STEP1 -0.04   |   2.75 0.75   |   9.45 

STEP2 -0.02   |   2.74 0.75   |   9.45 

STEP3  0.44   |   6.21 1.32   |   7.76 

STEP4  0.44   |   6.16 1.33   |   7.78 
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In terms of significant wave height, the best score is obtained with the STEP 1 and 
STEP 2 MCPs (linear regressions): 2 cm of bias and less than 3% of NRMSE. In fact, 
the relation between measured and simulated Hs is often very linear, as illustrated in the 
figure 3. 
Regarding the wave peak period, the results are less biased (0.75 second) using the 
linear regressions but the NRMS errors are lower using the exponential and polynomial 
regressions (7.8 % versus 9.4 %) since the relations between measured and simulated 
wave periods are more complex (figure 3). 
 
4.2 Wave potential estimate 
The following table shows the scores (bias and normalized root mean square error) of 
the original LTND and the 4 MCP-modified LTND at the target site (Four buoy), in 
terms of wave potential (using deep waters and JONSWAP approximations). 
The best score is obtained using the linear regression (MCP 1). In fact, the wave 
potential highly depends on the value of the significant wave height (square 
relationship) and as discussed above, the relation between measured and simulated Hs is 
very linear. The overall wave potential bias goes from 3661 kW/m (original LTND) to 
880 kW/m (STEP 1 MCP), that is to say a bias divided by 4. 
 

 

Steps 

WPJA 

BIAS [kW/m]   |    NRMSE [%] 

Original 3661   |   2.45  

STEP1   880   |   2.12 

STEP2 1086   |   2.18 

STEP3 6890   |   3.19 

STEP4 6560   |   3.05 

Table 3: WPJA scores of original and modified LTNDs at the target site. 
 
4.3 Wave peak direction classes  
The wave peak period time series at point Belle-Ile is finally divided in wave peak 
direction classes, in order to simplify the relationships between measured and simulated 
peak periods at this point. Then a STEP 1 MCP (linear regression) is applied to each 
directional class and the final modified LTND at the target site (Four buoy) is 
reconstituted. 
The figure 4 shows the results in terms of peak periods obtained at the target site versus 
the number of directional classes at point Belle-Ile (on the left) and the results in terms 
of wave potential obtained at the target site versus the number of directional classes at 
point Belle-Ile (on the right). 
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It highlights the fact that the bias on wave peak period can be reduced by this way and 
both the bias (reduced through 20%) and NRMSE (reduced through 8%) on wave 
potential too. 
 

 
Figure 1:scores of  modified LTND at the target site versus number of directional 

classes, Tp (left) and WPJA (right). 
 
5. Discussion 
Several MCP techniques were implemented on long-term wave dataset in reference site 
and performances were compared at a target site. The results of these modifications are 
shown in terms of wave parameters (table 2) and in terms of wave potential according to 
deep-water and JONSWAP approximations (table 3). The gain provided by these 
techniques is significant with a wave potential bias divided by 4. In a second step, the 
analysis was broken down into wave peak direction classes, resulting in reduced bias for 
a higher number of classes. The identification of wave systems in terms of wave peak 
direction and wave peak period classes could be improved. A limitation of this work is 
the lack of in-situ data in each reference site. 
In future studies, the question of the impact of the number of reference sites and the 
length of the period covered by measurements should be addressed. The artificial neural 
network technique will also be tested in an automated way in several areas around the 
world thanks to the Metocean Analytics software. We will also take an interest in how 
to implement these techniques on ocean current, by applying filters on the current 
components. 
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