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Abstract: 
Chloride ingress into concrete is one of the major causes leading to the degradation of 
reinforced concrete structures. Its modelling is an important task to plan and quantify 
maintenance operations of structures. Relevant material and environmental parameters 
for modelling could be determined from inspection data that is very limited due to time-
consuming and expensive tests. The main objective of this paper is to develop a method 
based on Bayesian updating for selecting appropriate inspection configuration that can 
provide an optimal balance between accuracy and cost. The results indicate that 
Bayesian approach could be a useful tool to identify model parameters even from 
insufficient inspection data. 
Keywords: Chloride ingress, Corrosion, Bayesian network, Parameter identification. 
 
1. Introduction 
Chloride penetration into reinforced concrete (RC) is one of the main factors 
responsible for generating corrosion in reinforcing bars, which may shorten the lifetime 
of RC structures (BONNET et al., 2009). Hence, inspection of chloride ingress in RC 
structures is an important task to determine the level of chloride inside concrete that is 
useful for optimizing maintenance costs of structures (BASTIDAS-ARTEAGA & 
SCHOEFS., 2012). Under natural exposure, chloride ingress is related to an important 
number of uncertainties (BASTIDAS-ARTEAGA et al., 2011; SAASSOUH & 
LOUNIS, 2012) such as: chloride surface concentration, chloride diffusion coefficient, 
etc. These uncertainties accompany with the variability in space of chloride 
concentration in concrete require a large number of inspection points. However, in real 
practice, the inspection just can carried out with a limited number of points due to time-
consuming, the expensive of the tests and the difficulties to implement in practice. 
Therefore, it is necessary to use the available information in the best way for uncertainty 
quantification by using statistic and/or probabilistic methods. The Bayesian method is a 
reasonable choice to deal with this problem. 
The Bayesian network (BN) is an effective tool for the identification of parameters. 
Some studies (BASTIDAS-ARTEAGA et al., 2012; RICHARD et al., 2012) proposed 
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an approach based on the use of BN allowing the parameter identification from real data 
and showing an agreement between numerical prediction and experimental 
measurements. In this study, BN will be also used as a tool for identification of 
parameters in chloride penetration model. Different configurations and schedules of 
inspection will be taken into consideration to determine an improved inspection scheme. 
 
2. Bayesian identification and its application to chloride ingress 
 
2.1 Introduction to Bayesian network 
Generally, a BN is a specific type of graphical model that is represented as a Directed 
Acyclic Graph (DAG). Nodes in DAG are graphical representation of objects and 
events that exists in real world, and they are used to represent variables or states. Causal 
relations between nodes are represented by drawing an arc (edge) between them. If there 
is a causal relationship between the variables (nodes), there will be a directional edge, 
leading from the cause variable to the effect variable. Each variable in the DAG has a 
Probability Density Function (PDF), which dimension and definition depends on the 
edges leading into the variables. Figure 1 describes a simple BN that consists of three 
nodes corresponding to three random variables X1, X2 and X3 in which X2 and X3 are 
children of the parent node X1. The children nodes have conditional probability 
distributions that depend on their parent node. The parent node has a marginal 
probability distribution. The Bayes’ rule allows for computing the posterior probability 
p(X1| X2), given the prior and the conditional probabilities p(X1) and p(X2| X1): 
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Figure 1. A simple Bayesian network. 

 
2.2 Application to chloride ingress 
 
2.2.1 Chloride ingress and modelling 
In saturated concrete, the Fick’s diffusion equation (TUUTTI, 1982) is usually used to 
predict the unidirectional diffusion (in x-direction): 
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where Cfc (kg/m3) is the concentration of chloride dissolved in pore solution, t (year) is 
the time and Dc (m/s2) is the effective chloride diffusion coefficient. Assuming that 
concrete is a homogeneous and isotropic material with the following initial conditions: 
(1) the concentration is zero at time t = 0 and (2) the chloride surface concentration is 
constant during the exposure time; the free chloride ion concentration C(x,t) at depth x 
after time t for a semi-infinite medium is: 
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where Cs (kg/m3) is the chloride surface concentration and erf(.) is the error function. 
Equation (3) is just valid when RC structures are saturated and subjected to constant 
concentration of chlorides on the exposure surfaces. In real structures, these conditions 
rarely appear because concrete is a heterogeneous material and the chloride 
concentration in the exposed surfaces could be time-variant. Besides, this solution does 
not consider chloride binding capacity, concrete aging and other environmental factor 
such as temperature and humidity (BASTIDAS-ARTEAGA et al., 2011). Although this 
solution neglects some important physical phenomena, this model will be used herein to 
illustrate the proposed methodology for the identification of random variables using 
BN. The methodology can be after extended to more realistic chloride ingress models. 
 
2.2.2 Bayesian model of chloride ingress 
The chloride ingress could be modelled by the BN described in Figure 2 where Cs and D 
are the two parent nodes (random variables to identify) labelled number 1 and 2. There 
are n child nodes C(xi, tj) representing the chloride concentration at depth xi and at 
inspection time tj labelled number from 3 to k. The number of child nodes is computed 
as: 

x tn n n=  (4) 
where nx is the total number of points in depth and nt is the total number of inspection 
times. Assuming that Cs and D are two independent random variables, the values of 
C(xi, tj) could be easily estimated from equation (3). In this BN, the probability of 
chloride concentration p(C(xi, tj)) can be calculated as follows (BASTIDAS-ARTEAGA 
et al., 2012; NGUYEN, 2007): 
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Figure 2. The BN modeling chloride ingress. 

 
To estimate p(C(xi,tj)), the conditional probability p(C(xi,tj)|D,Cs) must be already 
known in equation (5). This conditional probability is computed based on the 
Conditional Probability Table (CPT) of the BN. The BN allows entering evidences into 
the network and then updating the probabilities in the network. In this study, the 
evidences correspond to measures of chloride concentration at given points and times. 
Then, the term p(C(xi,tj)|o) represents the probability distribution of C(xi,tj) given 
evidence o and a posterior distribution can be computed by applying the Bayes’ 
theorem: 
( ) ( )( ) ( )( )| | , , |i j i jp D o p D C x t p C x t o=  (6a) 
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Determination of these conditional probabilities is carried out by the BN Tool Box 
which is built on the Matlab® Software. 
 
2.2.3 Parameter identification using BN  
We aim at identifying Cs and D from chloride profiles. We assume that Cs and D follow 
a priori uniform distributions defined in given intervals. The intervals for each 
parameter should contain all possible values and can be defined on the basis of existing 
databases, similar study cases, or expert knowledge. The assumption of uniform 
distribution for unknown parameter could avoid making any assumption about 
distribution shape (BASTIDAS-ARTEAGA et al., 2012). Most of parameters in 
chloride ingress are defined in continuous space. However in order to avoid using 
approximate inference algorithms which will be a disadvantage when working with 
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continuous variables, continuous variables must be replaced by discrete random 
variables (STRAUB, 2009). The discretization of each parameter is described in 
Table 1. 
Data from inspections will be introduced to the BN as evidences. This data could be 
obtained both from experimental measurements or expert knowledge. In this study, for 
the purpose of generalization the optimization, the numerical evidences obtained from 
known input random variables will be generated with a sufficient number of 
simulations. The probability that C(xi,tj) belongs to a given interval for different depth is 
then computed for the identification of the term p(C(xi,tj)|o). 
In this study, numerical evidences were generated using Monte Carlo methods with 
parameters given in Table 2. The mean values for each parameter were taken from 
(BASTIDAS-ARTEAGA et al., 2009). However, the COV for each parameter were 
reduced to 20% and 15% for Cs and D, respectively. This is due to the fact that within 
one type of concrete, the variation was narrowed. The assumption that Cs and D follow 
lognormal distributions is also in agreement with some other researches 
(DURACRETE, 2000; VU & STEWART, 2000). These assumptions were used to 
generate 10000 random values for Cs and D corresponding to 10000 independent 
inspections points. 
 
Table 1. Discretization of parameters. 
Parameters Number of intervals A priori distribution Range 
Cs (kg/m3) 16 Uniform (0.5; 8) 
D (m/s²) 20 Uniform (6×10-13; 3×10-12) 
C(xi,tj) (kg/m3) - - (0 ; 8) 

 
Table 2. Theoretical values of parameters to identify 
Parameters Distribution Mean  COV Standard deviation 
Cs Lognormal 2.95 (kg/m²) 20% 0.59 
D Lognormal 1.33×10-12 (m/s) 15% 0.2×10-12 

 
3. Selection of configuration in Bayesian network 
In this section, different configurations of the BN corresponding to different inspection 
schemes will be analysed for selecting inspection schemes that provide the best 
estimation for parameters. Each configuration will be evaluated by the error of the 
identified parameter Zidentified with respect to the theoretical value Ztheory as: 

( ) .100%identified theory

theory

Z Z
Error Z

Z
−

=  (8) 

where Z represents the mean or the standard deviation of the parameter to identify. 
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3.1 Identification using one point in depth of inspection 
In this part, the estimation of the chloride surface concentration (Cs) and chloride 
diffusion coefficient (D) will be analysed from evidences obtained at one depth point. 
Figure 3a shows the chloride profile computed from equation (3) where Cs and D have 
the values as shown in Table 2 at an inspection time tins = 10 years. The total inspection 
depth is assumed at 12cm. At deeper point, the chloride content is almost zero. The BN 
now consists of three nodes: two parent nodes are Cs and D, one child node C(xi,tj) 
representing for chloride concentration at depth xi and time tins = tj=10 years. 
 
3.1.1 Convergence of the BN with the number of intervals 
As previously mentioned in 2.2.3, continuous variables need to be discretised into 
equivalent intervals. The number of intervals could be adjusted to obtain the balance 
between accuracy of results and time used for computations. When a more accurate 
result is expected, a high value of number of intervals is often chosen. Figure 3b 
describes the estimations of the error of the mean value of Cs with different 
discretisation and inspection depths. It is clear that, no fluctuation is recorded in the 
case in which each node C(xi,tj) in the BN is divided into 200 intervals. This means that 
a high number of intervals could lead to a convergence in BN. Consequently, we will 
keep 200 intervals for node C(xi,tj) for all BNs in this part. This numerical 
implementation can be seen as a suboptimal for the estimation. 
 

 
Figure 3. (a) Chloride profile at t=10 years - (b) The convergence of BN with different 

intervals. 
 
3.1.2 Analysis of the results 
Figure 4 shows the error in the identification of the mean and standard deviation of Cs 
and D. For Cs, evolution of the error of both mean and standard increases with the 
depth. These estimations are corresponding to the evolution of the chloride profile in 
Figure 3a where the chloride content reduces as depth increasing. This means that, data 
from chloride profiles near the surface will provide more information for the updating, 
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whereas less information in the deeper parts increases the error in the identification. 
When the chloride content is closed to zero, these errors will reach the highest value 
closing to 40% for the mean. On the contrary, with the evidences near the surface 
(x ≈ 0), we can obtain the best estimation for the mean and standard deviation of Cs, 
with errors are 1% and 3% respectively. This might due to the fact that in equation (3), 
when we set x ≈ 0, C(xi,tj) ≈ Cs. Consequently, the chloride concentration at the surface 
is most valuable in the identification of Cs and the BN will put more weight on the 
evidence obtained at x = 0 cm. 
It is also observed in Figure 4 that the error in the identification of D decreases when the 
depth x < 8cm and after increases. This behaviour corresponds to the fact that chloride 
content at deeper parts is more useful in predicting the diffusion coefficient. However, 
at deep points where the chloride contents are close to zero for tins =10 years, the errors 
will increase. The errors in the identification of the standard deviation of D followed 
similar behaviours, however their values are very far from the theoretical values with 
important errors (more than 200%). Therefore, it can be concluded that it is impossible 
to perform a good identification of D using evidences obtained from only one point in 
depth. 
 

 
Figure 4. Error in identification using one depth point: (a) Mean – (b) Standard 

deviation. 
 
3.2 Identification using full inspection depth 
 
3.2.1 Using the same boundary for all the child nodes 
In this section, the identification in BN will use data from total inspection depth. The 
total inspection depth (12 cm) is divided into intervals to select several points for 
updating the BNs. The intervals length should not be smaller than 0.3cm due to the 
accuracy of the equipment for determining chloride profiles. The BNs will now have the 
number of child nodes equal to the number of measurements in depth. Table 3 describes 
different cases considered in this part. 
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Figure 5 shows the error in the identification using full inspection depth with the same 
boundaries for the child nodes. It is noted that there is no remarkable change in the 
identification of the mean of Cs (Figure 5a) because the errors in 5 surveyed cases are 
under estimated at approximate -5%. Meanwhile it seems that increasing the number of 
measurements in the inspection depth might produce more errors for the standard 
deviation of Cs (Figure 5b).  
For chloride diffusion coefficient, the gap between identified values and theoretical 
values for D are reduced significantly when the size of the discretization intervals is 
smaller. The errors in the estimation of the mean of D are less than 5% when the 
intervals are smaller than 0.5 cm. The standard deviation of D also reveals a better 
evolution when the error decreases from more than 200% with 3x cm∆ =  to about 20% 
with 0.3x cm∆ = . This behaviour is expected because when the inspection depth is 
divided into small intervals, we could obtain more information describing the level of 
chloride ingress that is useful for characterizing the diffusion coefficient. Hence, data 
from full inspection depth could be more useful in the identification of D. 
 
Table 3. Different discretization cases and number of points in depth. 
Case Δx (cm) Discretization  Number of points in depth 
1 0.3 0:0.3:12 41 
2 0.5 0:0.5:12 25 
3 1 0:1:12 13 
4 2 0:2:12 7 
5 3 0:3:12 5 

 

 
Figure 5. Error in identification using full inspection depth: (a) Mean – (b) Standard 

deviation. 
 
3.2.2 Using different boundaries for child nodes 
As discussed in section 3.2.1., when the inspection depth is divided into large intervals, 
the errors in the estimation of chloride diffusion coefficient increase significantly. In 
this case, a high value for the number of intervals will be required to obtain a better 
estimation. Nevertheless, increasing the number of intervals will increase the size of the 
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CPTs, which might also increase the computational time for the BN. TRAN et al (2014) 
proposed an algorithm to use different ranges for child nodes and keep the number of 
intervals in the discretization at a low value to reduce the computational time. By this 
means, we can optimize the information in deep points for building the evidences. 
Figure 6 shows the comparison in the estimation of the mean and standard deviation of 
D. It is clear that, in both cases: using a large number of intervals and using different 
ranges, the errors are reduced remarkably despite of the inspection length was divided 
into large intervals. This proposed approach could be very useful in practice when the 
number of measured points is limited or when the chloride content penetrated into 
concrete is low. 
 

 
Figure 6. Error estimation between 3 cases for D: (a) Mean – (b) Standard deviation. 

 
3.2.3 Using evidences from different inspection times 
In this section, evidences obtained from various inspection times will be introduced in 
the BN for the identification process. According to section 3.2.2, various boundaries 
were used for each child node in the BN with a sufficient number of intervals to 
minimize the fluctuation effects/errors in the results. 
From Figure 7, it can be seen that the inspection time tins influences the estimation of 
both the mean and standard deviation of D. The identification is improved when tins 
increases until arriving at an optimal inspection value tins,opt that varies between 30 and 
40 years for the identification of the mean and standard deviation. This phenomenon can 
be explained by the fact that when tins ≈ 35 years the chloride concentration in the total 
inspection length is sufficient for describing the chloride ingress process – i.e., there is 
sufficient chloride content at each point in the space to improve the identification. When 
tins > 40 years, the chloride content at x = 12 cm is larger than zero and therefore the 
identification errors increase because the inspection length is not large enough to 
describe the problem.  
 

713



Thème 4 – Ouvrages portuaires et offshore 
 

 
Figure 7. Error estimation for D with evidences from different inspection times: 

(a) Mean - (b) Standard deviation. 
 
It is also worth noticing that there is an optimal value Δxopt for each inspection time. 
The optimum value decreases when tins increases. This is related to the fact that for 
larger tins the chloride content inside the total inspection length is larger. Consequently, 
it is necessary to add more information to improve the representation of the chloride 
profile. It is also noted that the error is larger for smaller values of Δx in comparison 
with the Δxopt. There is no remarkable change in the estimation the mean value of D 
when ∆x vary from 0.3 cm to the optimal value. However, the variation is more 
important for the identification of the standard deviation of D. This is due to the small 
size of Δx could provide the identification errors between the two adjacent points 
(TRAN et al., 2014). When ∆x is larger than the optimal value, the errors for both mean 
and standard deviation increase because the information becomes poor for describing 
the chloride ingress process. 
 

 
Figure 8. Error estimation for Cs with evidences from different inspection times: (a) 

Mean - (b) Standard deviation. 
 
For Cs, the results presented in Figure 8 reveal that to obtain a good estimation of Cs, it 
is better to use the evidences at early inspection times. This is because the chloride 
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surface concentration does not depend on the time of inspection and at early inspections 
times the chloride concentration in the neighbouring of the concrete surface will be 
close to Cs. 
 
4. Conclusions 
The penetration of chloride is one of the main causes inducing corrosion of RC 
structures. The identification of parameters in chloride ingress modelling is crucial in 
predicting chloride ingress into concrete that will help to optimise the maintenance of 
structures exposed to chloride-contaminated environments. Inspection data used for the 
identification is very limited due to time-consuming and expensive tests. Therefore, it is 
necessary to use these data in an optimal scheme. Within this framework, the BN could 
provide a possibility to identify model parameters with different information. In this 
study, results based on numerical evidences revealed that there are optimal 
configurations of BN for the identification of each parameter (Cs or D). For Cs, an early 
inspection with one point close to the surface could provide a good identification. For 
D, to obtain identified values close to the theoretical values, the identification should 
use the evidences from full inspection depth. At a specific inspection time, there is an 
optimal discretization for the inspection length that could provide the best estimation for 
D. These optimal configurations could be combined to improve the identification of the 
model parameters. 
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