
 

XIIèmes Journées Nationales Génie Côtier – Génie Civil 
Cherbourg, 12-14 juin 2012 

DOI:10.5150/jngcgc.2012.031-H         © Editions Paralia CFL 
disponible en ligne – http://www.paralia.fr – available online 

 

 

Stability of a stratified shear flow  
for the modelling of estuary bed 

 
Alice HARANG 1,2, Olivier THUAL 1,2 

 
1. Université de Toulouse, INPT, UPS, IMFT, Allée Camille Soula, 

F-31400 Toulouse, France. 
2. CNRS, IMFT, F-31400 Toulouse, France. 

harang@imft.fr ; thual@imft.fr 
 
Abstract: 
To improve the understanding of mud resuspension and the behaviour of mud flow in 
estuaries, a parametric stability analysis of a shear flow is carried out with a model of 
two miscible fluid layers of different properties. The shear layer is modelled by 
asymmetric erf(z) vertical profiles of the same thickness for each quantities. The upper 
layer, composed of water, is considered as a Newtonian fluid. The lower layer mud flow 
is also considered as a Newtonian fluid of high density and high viscosity. A linear 
stability study, realized with the code LiSa developed at IMFT (Institut de Mécanique 
des Fluides de Toulouse), explores the influence of the principal control parameters: the 
Richardson number, the Reynolds number and viscosity ratio between the two fluids. 
Direct numerical simulations (DNS) performed with the code JADIM of IMFT are used 
to compute the temporal evolution of these flows and are compared with the linear 
stability study. Both approaches describe consistently the development of the bi-
dimensional primary instability. The computed critical Richardson number is close to 
0.25. Results show that for high Reynolds numbers, evaluated at the interface, there is 
no influence of the viscosity ratio with respect to the primary instability. For Reynolds 
number lower than 103, the viscosity has a destabilizing effect: a bigger difference of 
viscosity leads to a more important growth rate. This property can result in higher 
instability growth rates for highly viscous mud flows when submitted to a velocity shear 
in real estuaries. Secondary instabilities and the other processes leading to an eventual 
three-layer flow are documented through DNS simulations. Different secondary 
instabilities are observed depending on the Reynolds number at the interface. Likely 
outcomes of this study are new parameterizations of the bed sediment flux in realistic 
modelling of estuaries. 
Keywords: 
Estuary – Turbidity maximum – Mixing – Stratification – Mud flow – Resuspension – 
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1. Introduction 
Estuaries are very complex systems, and one of the sticking point is fluid mud. Its 
behaviour is still misunderstood, as pointed out MC ANALLY (2007) who says: "the 
fondamental dynamics of the processes and the formulation of constitutive relations are 
dependent on empirical relationships based on small data sets". Through the 
observations of the Amazon estuary, KINEKE et al. (1996) stresses the importance of 
mud flow on sedimentary process and hydrodynamic processes as it reduces the 
boundary shear stress. DOXARAN et al. (2009), using observations based on satellites, 
shows relations between the sediment discharge in the ocean at the Gironde estuary and 
the presence of mud flow in the lower estuary. Laboratory experiences have also been 
realized to provide a better understanding of mudflow process. GRATIOT et al. (2005) 
and SANCHEZ & LEVACHER (2008) respectively demonstrates the influence of 
isotropic turbulence on settling velocity and on the entrainment of plastic muds. Using 
numerical simulations, WINTERWERP (2002) presents the relation between 
flocculation and settling velocity. Concerning the entrainment, KRANENBURG & 
WINTERWERP (1997) propose a model based on the kinetic energy balance. Their 
study focuses on the entrainment of mudflow at the lutocline. This last interface can be 
considered as a mixing layer of two different miscible fluids. Stability and mixing of a 
shear stratified flow is studied by CORCOS & SHERMAN (1984) while its transition to 
mixing layer is documented by CORCOS & LIN (1984) and CAULFIELD & PELTIER 
(2000). Shear flow with viscous variation is explored by YIH (1967). The present work 
aims to improve models of entrainment proposed by PARTHENIADES (1963), 
PARCHURE & METHA (1985) and ODD & COOPER (1989), which are used in many 
numerical models such as TELEMAC_3D or SIAM-3D for example. Present study fills 
out HARANG et al (2010) by studing more precisly the effect of control parameters. 
The goal is to compute more accurately the sediment flux of estuaries and thus deal with 
pollution or coastal settlement.  
 
2. A conceptual model of mud flow 
 
2.1 Mixing layer profiles 
The water-mud flow interface is modeled by a two layer flow with continuous interface. 
Vertical profiles are based on the erf function near the interface, in an empirical way, to 
qualitatively model a simple shear. To model vertical profiles, we consider the group of 
functions F(, Z) defined by: 
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where Z is the non-dimensional vertical coordinate to be specified later, the origin of 
which is located at the interface. The parameter  controls the asymmetry of the fields 
located on both sides of the inflexion point, with continuity of the profile and its 
derivative around this point.  
We consider the vertical profiles of the longitudinal velocity u(z), of the density (z) 
and of the dynamic viscosity (z) given by the relations: 
  

 
(2)

where u,   and   are the thicknesses respectively associated to the profiles u(z), (z) 
et(z). Here, we restrict ourselves to the case where these three thicknesses are equal to 
=0.3 m. The boundaries of the simulation field are defined by the equations z=0 and 
z=3h, the height z=h=1 m being the interface location. In addition, we have chosen 
=0.1, since diffusion is assumed to be greater in water than in mud flow. The 
corresponding profiles are presented in figure 1. 
 

 
Figure 1. Initial profiles of u(z), (z) and (z) on the part z[0.8 m, 1.7 m] of the 

domain z[0, 3 h], with h=1 m, =0.3 m and =0.1. 
 
The choice of a 2D configuration has been justified by an exploration of 3D 
configurations, in which we have observed the development of instabilities in the flow 
direction. However the Squire Theorem, valid for homogeneous flows, cannot exclude 
instabilities with a finite spanwise wave number. 
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2.2 Control parameters 
In our configuration, the mixing of the two fluids is concidered: the upper layer is of 
density 2 and dynamic viscosity 2 while the lower layer is of density 1 and dynamic 
viscosity 1. The Atwood number At=(1-2)/(1+2) is fixed to 0.15. The three other 
non-dimensional numbers, relevant for our study, are defined by: 

where     112   hh ,     112   hh and   2uhuuh   are 
respectively the density, the viscosity and the velocity at the interface. The Reynolds 
number Re and the gradient Richardson number Ri are evaluated at the interface z=h 
defined by the inflexion of initial profiles, and W is the logarithm of the viscosity ratio 
between mud flow and water. 
 
2.3 Model equations and method of resolution 
Our model of mixed layer is studied through the following system of equations: 

 (4.a)

(4.b)

(4.c)

which links incompressible Navier-Stokes equations (4.a), where g is the acceleration of 
gravity, to the transport equation (4.b) of a volume fraction  which controls, through 
relations (4.c), the kinematic mixing of fluid particles of non-homogeneous density  
and dynamic viscosity . Molecular diffusion of sediments is neglected here (see 
DEARDORFF & WILLIS, 1982). Both entities are then mixed and followed through 
the volume fraction of lower layer fluid (mud flow) in the fluid, . So, in these 
simulations, density and viscosity are linear functions of the volume fraction and then 
vary in the same way. 
These equations are solved by the Navier-Stokes solver, JADIM, developed at IMFT 
(Institut de Mécanique des Fluides de Toulouse), specialized in multiphase 
incompressible flows. Based on primitive variables (velocity, pressure), the equations 
are solved by a finite volumes method. The code is 2nd order accurate in space and time, 
thanks to a 3rd order Runge-Kutta temporal scheme and a semi-implicit Crank-Nicolson 
scheme for diffusive terms. The equations are discretized using a 2nd order centered 
scheme with staggered variables (CALMET & MAGNAUDET 1996; LEGENDRE & 
MAGNAUDET 1998). The transport equation of the presence rate is discretized using 
the WENO scheme. The version used in the present study solves the system of 
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equations (4) and has been validated for a viscosity gradient by ERN et al. (2003) and 
for a density gradient by HALLEZ (2007).  
The stability of this interface is also studied through the consideration of little 
perturbations of a base flow. The linear stability code LiSa (ANTKOWIAK & 
BRANCHER, 2004; 2007) is used for this purpose, which provides a global vision of 
the problem. This code computes the eigen modes of the system of equations (4) 
linerarized around the base flow (2). Given a parallel base flow, a perturbation (defined 
by its wave vector) and specific numerical parameters, LiSa provides the eigen values 
and their associated modes, using a spectral method based on Chebyshev polynomials. 
So, for each wave vector, one can extract the most unstable mode and its growth rate. 
Two versions are used. The first is classical: a real mapping is employed to go from the 
physical grid point space ot the spectral space of Chebyshev coefficients. The second 
version, following the idea of FABRE et al. (2006), uses a complex mapping between 
the physical and spectral spaces which allows us to find more converged eigen values in 
some configurations. 
 
3. Results 
 
3.1 Linear stability analysis 
In this first part, series of linear stability computations have been realised to study the 
influence of control parameters presented above. In these computations, the 
configuration parameters (, , h, H) are constant as well as the density of each layer. 
The velocity of the upper layer fixes the Richardson number, Ri (the lower layer being 
steady). Viscosities of the two layers allow us to choose the Reynolds number Re at the 
interface and the viscosity ratio, W. The growth rate of the more unstable mode is 
computed for the normalized wavenumber of the perturbation k* and is presented in 
figure 2 for Ri=0.15, W=0. We choose to scale the wave number with half the thickness 
of the interface : 4/* kk  ; the phase velocity by 2/2u  and the growth rate is 
normalized by  22/* u  . 
We first observe, in figure 2, the variation of the growth rate * as function of the wave 
number k*. The part of the spectrum that is represented with continuous lines is 
obtained with a distribution of spatial grid points obtained with a classical mapping. The 
part represented with dashed lines has been computed with a complex mapping, in 
which the coordinates of the grid points are replaced by imaginary numbers. This 
method has been developed to get rid of the critical layer singularities and thus compute 
more eigenvalues near the marginal stability curve, especially for large wave number. 
The configuration is unstable for a Richardson number under a critical Richardson 
number Ric~0.25. Contrary to the classical study of tanh mixing layer (see HAZEL, 
1972), higher instable wave number are observed because of the asymmetry of vertical 
profiles. 
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The growth rate and the critical Richardson number are a little higher when Re is 
decreased and W increased. This is further illustrated in figure 4, which shows 
isocontours of the growth rates 0.02 and 0.08 in the wave number and Reynolds number 
plane for different viscosity ratios W. This figure shows that, for Reynolds number 
higher than 103, the growth rate no longer depends on the viscosity ratio nor the 
Reynolds number. For Reynolds numbers smaller than this value, we observe more 
important growth rates and thus a larger interval of instable wave numbers: the viscosity 
has a destabilising influence. We can also note that a higher viscosity ratio between 
fluids emphasises this destabilising effect. Figure 5, which represents the evolution of 
the higher growth rate with the Reynolds number, presents the same influence of the 
viscosity ratio. It also suggests a smaller critical Reynolds for the development of the 
instability for important viscosity gradients. 
 

Figure 2. Growth rate * for k*=[0,1.2], 
Re=96, W=3 (… : complex mapping) 

Figure 3. Growth rate * for k*=[0,1.2], 
Re=100, Ri=0,15 (… : complex 

mapping). 
 
3.2 Direct numerical simulations 
Direct numerical simulations of this configuration have been realized with the code 
JADIM. The 2D simulations are performed on a periodic field in the streamwise 
direction, of 3m height and 2/k length with a resolution of 0.5  0.5 cm, and with no 
slip boundary condition at the bottom and free-slip condition at the top. At initial time, 
the parallel flow is perturbed by inserting, at low amplitude, the perturbations profiles 
for all quantities fields, obtained with the linear stability code LiSa. 
The growth rate of instabilities is computed as the director coefficient of 0.5 log(Ek) 
with the time (see figure 6), where Ek is the kinetic energy. 
A linear growth is observed for Re=103 et Re=104. Compared to the LiSa computation, 
an error of 10% on the growth rate is observed for Re=103 and of only 3% for Re=104. 
In the case of Reynolds numbers smallers than Re=102, viscosity leads to important 
diffusivity of the velocity profiles. Characteristic numbers of the developpement of the 
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instability and diffusion by viscosity are of the same order and we can no longer make 
the hypothesis of quasi-steady state for the base flow. In complement to the LiSa code, 
direct numerical simulations show the saturation of the instability and the development 
of secondary shear instabilities (see figure 7), pairing and eventually leading to a stable 
three layer flow. These simulations need higher resolution, secondary instability in 
figure 7 has been obtained with a grid of 720  1200 points (squares of 0.25 cm). 
 

Figure 4. Iso-contours of the growth rate 
as function of the wave number k* and the 

Reynolds number Re, for Ri=0,15, and 
different W. 

Figure 5. Maximum of the growth rate as 
function of the Reynolds number for 

different W. 

 

Figure 6. Representation of the kinetic 
energy logarithm as function of the time 

for different Re numbers (Ri=0.15, 
k*=0,46, W=0). 

Figure 7. Representation of the density 
field at time t=14s for W=2, Re=103, 

k=0,46, Ri=0,15. 

 
3.3 Application to a scenario of mud consolidation 
If we now project our study in the natural environment, such as for the case of the mud 
flow, we can consider that the upper layer is water with a fixed viscosity of 2=10-3 Pa.s, 
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a density of 2=1000 kg m-3 and the mud flow, of density 1=1360 kg m-3 (MEHTA et 
al., 1989) and viscosity 1. For a given Richardson number, if the viscosity of the mud 
flow is growing, the Reynolds at the interface will decrease like 10W, the viscosity ratio. 
As presented in figure 8, for important viscosity ratios, the growth rate is more 
important because of both the smaller Reynolds number leading to the destabiling effect 
of viscosity and the viscosity ratio amplificating this effect. 
 

 
Figure 8. Instability growth rate for muds of different viscosity at mudflow – water 

interface, Ri=0,15. 
 
4. Conclusion 
We have modeled the interface between water and mud flow by two Newtonian 
miscible fluids presenting strong variations of density and viscosity. The linear stability 
analysis explores the range of control parameter and allows a better understanding of 
their influence on the flow. The Richardson number of the interface, balancing 
stratification and shear effect, controls the heart of the Kelvin-Helmholtz instability: a 
Richardson behind the critical Richardson number (Ric~1/4) leads to instability. For 
large Reynolds number, there is no influence of the viscosity ratio, or the Reynolds 
number on the instability. Under about 103, the Reynolds number at the interface has an 
influence on the instability: the viscosity has a destabilizing influence. The viscosity 
ratio increases this destabilizing effect. The direct numerical simulations permit a 
validation of these results and show their limits: for smaller Reynolds number, the 
hypothesis of quasi-steady state of the mean flow is not possible. Eventually, at the mud 
flow – water interface, if the mud flow is about 100 times more viscous than water, the 
growth rate will be more important because of both the influence on the Reynolds 
number amplified by the viscosity ratio. In the future, a comparison with visco-plastic 
flows is planed to have better understanding of the role of the yield stress. 
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