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Abstract: 
Nonlinear and dispersive effects are significant for nearshore waves, leading to the 
study and development of a fully nonlinear and dispersive potential-flow model solving 
the Euler-Zakharov equations, which determine the temporal evolution of the free 
surface elevation and velocity potential. 
The mathematical model and its numerical implementation are presented, as well as the 
approach chosen to extend the model to two horizontal dimensions. The nonlinear and 
dispersive capabilities of the 1DH version of the model are demonstrated by applying 
the model to two test cases: (1) the generation of regular waves created by a piston-like 
wave maker and the propagation of the associated free and bound harmonics over a flat 
bottom, following the experiments of CHAPALAIN et al. (1992), and (2) the 
propagation of irregular waves over a barred beach profile, following the experiments of 
BECQ-GIRARD et al. (1999). The accuracy of the model in representing high-order 
nonlinear and dispersive effects is demonstrated by the reproduction of the energy 
transfers between different harmonic components. 
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Then, the development of the 2DH version of the model is tested simulating the 
propagation of regular waves over a semi-circular step acting as a converging lens, 
reproducing two experiments of WHALIN (1971). The initial results obtained using 
Radial Basis Functions to estimate the horizontal derivatives demonstrate the ability of 
the model to simulate wave propagation over variable 2DH bathymetries. These results 
indicate the potential of applying the model to simulate realistic cases.  
 
1. Introduction 
Wave transformation from the offshore to the beach includes a variety of different 
physical processes from refraction and shoaling, to dissipation due to bottom friction or 
wave breaking, diffraction, reflection from structures, islands or shoals, etc. Accurate 
simulation of all of these processes is not an easy task, especially given the significant 
variation of the relative water depth ߤ ൌ ݄݇ (where ݇ is the wave number and ݄ is the 
water depth) between the offshore and the coast. Furthermore, nonlinear effects, 
quantified by the steepness parameter ߝ ൌ  ݄/ܪ or the relative wave height 2/ܪ݇
(where ܪ is a characteristic wave height) become important in the coastal zone because 
of the decrease in water depth. 
To represent accurately these two effects, numerical models of wave propagation 
require high nonlinear and dispersive capabilities. In the field of coastal and harbor 
engineering, some frequently used modeling approaches are based on the mild-slope 
equation of BERKHOFF (1972) or one of its extensions, which neglect nonlinear 
effects. Other models resolving the Boussinesq, Serre or Green-Naghdi equations take 
into account some of the nonlinear and dispersive effects (e.g. MADSEN et al., 1991 ; 
NWOGU, 1993 ; KIRBY, 2003 ; CHAZEL et al., 2011). However, these models are 
only partially nonlinear and/or dispersive, even when using high-order formulations 
(MADSEN et al., 2002, 2006; BENOIT & CHAZEL, 2013). 
With the objective of obtaining a highly accurate simulation tool, a fully nonlinear and 
dispersive model is developed, based on the Euler-Zakharov equations (ZAKHAROV, 
1968) by assuming potential flow theory (YATES & BENOIT, 2015). BENOIT et al. 
(2014) and RAOULT et al. (2014, 2016) presented several validation test cases of the 
1DH (x,z) version of the code for non-breaking waves. Here, the recent developments 
and validation are presented and discussed. 
The bases of the mathematical model are briefly outlined in part 2, then the numerical 
implementation is presented in part 3. In part 4, the simulation results from the 1DH 
model are compared to two sets of experimental measurements where strong nonlinear 
effects are observed. A preliminary application to a 2DH (i.e. 3D) test case is presented 
in part 5. This test case simulates the experiments of WHALIN (1971) for two incident 
wave conditions propagating over a bathymetric profile causing wave convergence. 
Conclusions and perspectives are summarized in part 6. 
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2. Presentation of the mathematical model  
Assuming irrotational flow of an inviscid fluid with constant density, the potential flow 
approach is adopted. The fluid system is described by the velocity potential (ݔԦ,z,t), 
with ݔԦ=(x,y), satisfying the Laplace equation in the entire domain (mass conservation). 
The Laplace equation is supplemented by the kinematic and dynamic nonlinear 
boundary conditions at the free surface, z=(ݔԦ,t), an impermeable condition at the 
bottom z= h(ݔԦ,t), and Dirichlet or Neumann conditions at the lateral boundaries. For 
the applications presented here, the bathymetric profile is constant in time, but the 
model may be used to study tsunami-like cases with the generation of waves by a 
moving bottom (see BENOIT et al. 2014). 
By assuming the continuity of the water column between the bottom and the free 
surface, the velocity potential at the free surface (ݔԦ,t)=(ݔԦ,z=(ݔԦ,t),t) can be defined. 
The free surface boundary conditions become (ZAKHAROV, 1968): 
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 is the vertical component of the free surface velocity. 

This set of equations (1-2) is expressed only as a function of surface quantities. 
However, the temporal integration of these equations requires calculating ݓ෥ , which 
must be estimated from  and ψ, a problem called "Dirichlet-to-Neumann" (DtN). 
 
3. Presentation of the numerical implementation 
The numerical resolution of equations (1-2) requires: a temporal integration scheme, a 
method to solve the DtN problem, and an approach to compute the first and second-
order spatial derivatives. Details on the numerical implementation of the 1DH (x,z) 
version of the model are available in YATES & BENOIT (2015) and RAOULT et al. 
(2014, 2016); only the main elements are repeated here. To integrate in time, an explicit 
fourth-order Runge-Kutta scheme with a constant time step is used. 
The DtN problem is solved using a spectral approach in the vertical (TIAN & SATO, 
2008) to obtain the solution of the Laplace boundary value problem for the velocity 
potential in the entire domain. A change in the vertical coordinate defined by: 

,Ԧݔሺݏ ,ݖ ሻݐ ൌ
ݖ2 ൅ ݄ሺݔԦ, ሻݐ െ ,Ԧݔሺߟ ሻݐ
݄ሺݔԦ, ሻݐ ൅ ,Ԧݔሺߟ ሻݐ

																																																																																											ሺ3ሻ 

transforms the irregularly shaped domain to a domain of constant height, with ݏ ൌ െ1 
at the bottom and ݏ ൌ ൅1 at the free surface. Then, the velocity potential is 
approximated with a spectral approach, using a basis of Chebyshev polynomials of the 
first kind ௡ܶሺݏሻ over the range ሾെ1,൅1ሿ: 
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The expansion is truncated at order NT. For practical applications, the optimal value 
appears to be between 5 and 10, as shown by BENOIT et al. (2014) and RAOULT et al. 
(2014, 2016). In the 1DH version of the model, fourth-order finite difference schemes 
are used to estimate the horizontal spatial derivatives, allowing variable spatial 
resolution for general cases. In practice, the resolution of the Laplace boundary value 
problem at a given time results in the resolution of a linear system for the ܽ௡ሺݔԦሻ 
coefficients for ݊ ൌ 0, 1, … ,்ܰ. The vertical velocity at the free surface is then given 
by: 
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In order to simulate realistic test cases with complex bathymetric profiles and waves, 
the model was extended to two horizontal dimensions (i.e. 3D). To maintain the 
flexibility of the approach and to apply the model to irregularly shaped domains, the 
horizontal plane is discretized with scattered nodes, and the horizontal derivatives are 
estimated using the Radial Basis Function (RBF) method (WRIGHT & FORNBERG, 
2006). The spectral approach in the vertical dimension is maintained. The derivative of 
a function f at node ݔపሬሬሬԦ is approximated by a linear combination of the values of the 
function f at the n-1 nearest neighbors (n is the number of nodes in the stencil): 

పሬሬሬԦሻݔሺ݂ሻሺܮ ൌ ෍ݓ௟,௞
௅ ݂ሺݔ௞ሬሬሬሬԦሻ

௡

௞ୀଵ

 (6)

with L any linear differential operator and the ݓ௟,௞
௅  the unknown coefficients to be 

determined for each operator L at each node ݔపሬሬሬԦ. To achieve this, a set of test functions 
forming a base is chosen, for which the approximation must be satisfied. Here, radial 
functions are considered, centered at the nodes of the stencil ݔ௞ሬሬሬሬԦ k=1,n: ߮௞ሺݔԦሻ ൌ
ሬሬԦ	ݔ‖ሺߔ െ  ,௞ሬሬሬሬԦ‖). This leads to the resolution of a linear set of n equations for n unknownsݔ
which can be written as: 
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With fixed nodes, this set of equations is solved only once at the beginning of the 
simulation for each differential operator at every node in the domain. In the following, 
the multiquadric radial function (WRIGHT & FORNBERG, 2006) is used: 

ሬሬሬԦ		ݔ൫ฮߔ െ ௞ሬሬሬሬԦฮ൯ݔ ൌ ටฮݔ	ሬሬሬԦ െ ௞ሬሬሬሬԦฮݔ
ଶ
൅ ܿଶ (8)
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where c is a shape parameter. This parameter controls the flatness of the function. The 
larger the value of c, the flatter the function. Increasing the value of c tends to reduce 
the approximation error but may also increase the condition number of the matrix and 
lead to larger numerical errors in the resolution of the system. 
 
4. Validation of the 1DH version of the model  
 
4.1 Dynamics of regular waves generated by a piston-type wave-maker over a flat 
bottom 
CHAPALAIN et al. (1992) studied the propagation over a flat bottom of waves 
generated by the sinusoidal motion of a piston-type wave-maker. This test case consists 
of reproducing trial A of the experiments corresponding to a sinusoidal motion with a 
maximum amplitude e=7.8 cm and period T=2.5 s, in a water depth h=0.4 m. From the 
linear dispersion relation, the wavelength is estimated as L=4.74 m. In the simulations, a 
vertically uniform velocity profile that varies sinusoidally in time, is applied at the left 
boundary. The right boundary is located far enough from the wave maker to avoid 
reflections. Waves are propagated during 16 wave periods (approximately 40 s) with a 
time step Δt=T/40=0.0625 s. The maximum order of the Chebyshev polynomial is 
NT=7, and a regular mesh is used with Δx=0.1 m. 
Once the stationary state is reached, a Fourier analysis of the free surface elevation time 
series is completed to estimate the amplitudes and phases of the harmonics (Figure 1a). 
The model simulates accurately the transfer of energy between the different harmonics, 
reproducing well the beat length, induced by the co-existence of free and bound waves 
of the 2nd, 3rd, and 4th harmonics. The slight overestimation of the amplitude of the 
second harmonic (2f) by the model after x=19 m, is likely explained by the fact that 
dissipative effects are not taken into account in the simulations. The spatial evolution of 
the phase difference between the first and second harmonic (Figure 1b), is well 
represented by the model, oscillating between −π/2 and +π/2 with the same beat length 
as that observed in the spatial evolution of the amplitude. The two first harmonics are in 
phase when the first harmonic amplitude is maximum and the second harmonic 
amplitude is minimum, and vice versa. 
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Figure 1. Spatial evolution a) of the first four harmonic amplitudes of the free surface 

elevation for trial A of CHAPALAIN et al. (1992) and b) of the phase difference 
between the first and second harmonic. The experimental results are represented by the 

dots and the simulation results are represented by the solid lines.  
 
4.2 Propagation of irregular waves over a submerged bar  
This test case simulates the propagation of irregular waves over a submerged bar 
following the experiments of BECQ-GIRARD et al. (1999). The bathymetric profile 
(Figure 2) was designed to study nonlinear effects in shallow water. In the experiments, 
irregular waves are generated using a JONSWAP wave spectrum with a peak 
enhancement factor of γ=3.3, a peak period Tp=2.39 s, and a significant wave height 
Hm0=3.4 cm in the deep end of the wave flume where h=0.65 m (trial 26 of BECQ-
GIRARD et al. (1999), without wave breaking). The free surface elevation is measured 
at 16 probes during 40 min with a time step Δt=0.07 s. 
 

 
Figure 2. Bathymetric profile and location of the wave measurement probes for the 

experiments of BECQ-GIRARD et al. (1999). 
 
For the simulations, the computational domain extends from x=−5 m to +25 m, with the 
foot of the bar located at x=0 m. The horizontal domain is discretized regularly with a 
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resolution of Δx=0.05 m, and NT=7. The free surface elevation measured at probe 2 is 
used to force the model. The associated velocity potential is reconstructed from a 
spectral analysis of the time series using linear theory and then imposed at the left 
boundary. A 5 m-long relaxation zone is added for wave generation, where the free 
surface elevation and velocity potential are corrected at the end of each time step. At the 
right side of the domain, a 10 m-long relaxation zone is added to absorb waves. The 
waves propagate during 2380 s (approximately 39.7 min) with a time step equivalent to 
the sampling frequency of the probes. 
The free surface variance spectra calculated from the simulation results agree well with 
those calculated from the measurements (e.g. Figure 3, probes 2, 9, 15, and 16). The 
transfer of energy from the main peak (at frequency fp) to higher frequencies is observed 
with the appearance of peaks at the harmonic frequencies (up to the fifth harmonic) in 
the spectrum of probe 9. After the bar, as the water depth increases, the energy transfer 
reverses, with most of the energy returning to the second harmonic. Spectral peaks at 
the third, fourth, and fifth harmonics disappear at probe 15, while the peak of the second 
harmonic increases. Finally, a peak at the third harmonic reappears at probe 16 due to 
the decrease in water depth at the end of the bathymetric profile. The evolution of the 
low frequency part of the spectrum is also represented well by the model. 
 

 
 

Figure 3. Comparison of the variance spectra computed from the free surface elevation 
measured (gray) and simulated (black) at four probes (2, 9, 15 and 16) for trial 26 of 

the experiments of BECQ-GIRARD et al. (1999). 
 

 
 



n01.22 : Revue Paralia – Vol. 11 (2018) 
 

 

 
Figure 4. Comparison of integral parameters of the sea state measured (gray) and 

simulated (black) along the bathymetric profile of the experiments of BECQ-GIRARD et 
al. (1999): a) significant wave height, b) mean period, c) skewness (horizontal 

asymmetry) and d) vertical asymmetry. 
 

The model represents accurately the spatial evolution of integral wave parameters such 
as the significant wave height Hm0 (Figure 4a) and the mean period Tm-1,0 (Figure 4b), 
computed from moments of the variance spectrum. Nonlinear effects appear as an 
increase in the significant wave height due to shoaling as the water depth decreases, 
followed by a decrease in the significant wave height over the trough. The mean period 
first decreases because of the transfer of energy from low to high frequencies and then 
increases when this transfer reverses. Moreover, two parameters quantifying the wave 
asymmetry were studied: the skewness (Figure 4c) and the vertical asymmetry (Figure 
4d), defined respectively as: 
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where Bm,n = B(fm, fn) is the bispectrum, or Fourier transform of the third-order 
autocorrelation function of the free surface elevation. These two parameters account for 
the asymmetry between the crest and trough elevation and between the front and back 
faces of the wave, respectively. In the deepest part of the bathymetric profile, the waves 
are weakly nonlinear, and these parameters are close to zero. The skewness and vertical 
asymmetry evolve along the bathymetric profile showing good agreement between the 
simulations and the measurements as the wave profiles become asymmetric with respect 
to the horizontal and vertical planes. 
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5. Application and validation of the 2DH version of the model 
This test case, based on the experiments of WHALIN (1971), consists in propagating 
regular waves over a semi-circular step acting as a focusing lens for the waves (Figure 
5.a). In the experiments, regular waves are generated by a piston-type wave-maker in a 
25.63 m-long and 6.096 m-wide wave tank, with a water depth of 0.4572 m. The 
bathymetric profile used in the simulations is the one described by SHAO & 
FALTINSEN (2014). Two incident wave conditions are simulated. The first case 
corresponds to regular waves with a period T=2 s and an amplitude a=0.0075 m. For the 
second case, the wave period is the same, but the amplitude increases to a=0.0106 m. 
The associated velocity potential is imposed at the left boundary. The computational 
domain contains the zone of interest between 0 and 25 m, which is supplemented by 
two relaxation zones: (1) a 3.91 m-long relaxation zone (i.e. one wavelength) at the left 
boundary to absorb waves reflected from the step and to reduce the reflections from this 
boundary, and (2) a 7.5 m-long relaxation zone (i.e. three wavelengths) at the right 
boundary to absorb waves. Impermeable boundary conditions are applied at the lateral 
boundaries. The domain is discretized by 60,716 scattered nodes (spaced approximately 
0.06 m apart). Waves are propagated during 36 s (i.e. 18 periods) with a time step 
t=T/75=0.0267 s. Stencils with n=13 nodes are used (i.e. the stencil of each node 
consists of the node and its 12 nearest neighbors), and the shape parameter is set to c=1, 
based on sensitivity tests of the accuracy of the results as a function of these two 
parameters. 
 

 

 
Figure 5. (a) Bathymetry and (b) simulated free surface elevation at the end of the 

simulation (t≈36.045s) for the experiments of WHALIN (1971) with T=2 s and 
a=0.0075 m. 
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The free surface elevation at the end of the simulation in the first case (Figure 5b) shows 
that, in the deeper part of the domain before the slope, waves are nearly sinusoidal and 
uniform in the y-direction. When the waves propagate over the slope, the wave field 
becomes three dimensional with highly nonlinear effects. The increase of the free 
surface elevation in the shallower zone is due to a combination of the effects of 
shoaling, diffraction, and refraction induced by the bathymetric profile. A Fourier 
analysis of the free surface elevation time series along the central axis of the tank shows 
the spatial evolution of the first three harmonics (Figure 6, for a=0.0075 m). The 
simulation results compare well with the experimental data. The second harmonic 
amplitude is slightly under estimated in the deeper part of the domain (x<10 m), likely 
because waves are generated using linear wave theory in the code. In the convergence 
zone (x≈20	 mሻ,	 the evolution of the harmonic amplitudes is reproduced well, in 
particular the increase of the second (2f) and third (3f) harmonic amplitudes due to 
transfers of energy from the first harmonic. Despite these energy transfers, the first 
harmonic amplitude remains constant after the step (outside of the absorption zone). 
This interesting observation can be explained by the fact that refraction effects induced 
by the bathymetric profile focus energy at a rate that is sufficient to compensate for the 
transfers of energy to higher order harmonics. For the second simulated case, with a 
larger incident wave height, the nonlinear effects are even more significant (Figure 7, 
for a=0.0106 m). In the convergence zone, the amplitude of the second harmonic 
reaches approximately two-thirds of the amplitude of the first harmonic, whereas in the 
first case it reached only one half. The transfer of energy from the first to the higher 
harmonics is no longer fully compensated for by refraction effects, and the amplitude of 
the first harmonic therefore decreases around x=20 m. 
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Figure 6. Spatial evolution of the first three harmonic amplitudes for the first case of 

WHALIN (1971), with T=2 s and a=0.0075 m. The shaded gray areas correspond to the 
relaxation zones used in the numerical model, and the three colors correspond to first 

(black), second (dark gray), and third (light gray) harmonics. 
 

 
Figure 7. Spatial evolution of the first three harmonic amplitudes for the second case of 
WHALIN (1971), with T=2 s and a=0.0106 m. The shaded gray areas correspond to the 
relaxation zones used in the numerical model, and the three colors correspond to first 

(black), second (dark gray), and third (light gray) harmonics. 
 
This test case demonstrates the ability of the model to simulate accurately strong 
nonlinear effects (refraction and shoaling) for a convergent 3D bathymetric profile. 
 
6. Conclusions and perspectives 
Based on a nonlinear potential flow approach (Euler-Zakharov equations), the proposed 
numerical model is applied to simulate the transformation of nearshore waves, including 
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nonlinear and dispersive effects, for a wide range of relative water depths. The two 1DH 
test cases confirm the nonlinear and dispersive capacities of the model, in particular the 
transfers of energy between the different harmonics (free or bound waves) during their 
generation and propagation. The beat lengths of the second and third harmonics 
observed in the experiments of CHAPALAIN et al. (1992) are reproduced well by the 
model. When simulating the transformation of irregular waves over a realistic coastal 
bathymetric profile (BECQ-GIRARD et al., 1999), the model is able to represent 
accurately the evolution of the spectral harmonic peaks up to the fifth harmonic. 
In addition, the use of Radial Basis Functions (RBF) to extend the model to two 
horizontal dimensions was verified, showing the accurate representation of nonlinear 
effects observed in the experiments of WHALIN (1971), for two different wave 
amplitudes. This set of experiments used a semi-circular bathymetric profile causing 
wave energy convergence along the central axis of the tank, with strong nonlinear 
effects, caused by refraction and shoaling. Two advantages of the RBF method are its 
capacity to handle irregularly scattered nodes and its flexibility allowing the local 
refinement of nodes for real applications. 
Determining the optimal value of the shape parameter used in the multiquadric function 
may, however, require a significant number of tests. Other radial functions that do not 
depend on a shape parameter (e.g. BARNETT, 2015) currently are being tested to 
validate the 2DH version of the model. In addition, future work will focus on including 
the effects of dissipation induced by wave breaking and the implementation of a run-up 
boundary condition for sloping bottoms. The parallelization of 2DH version of the 
model also should be completed to optimize the code for coastal and harbor engineering 
applications. 
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