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Abstract: 
A 1DH modeling is implemented to study a particular case of transport in suspension 
along a channel corresponding to a 2DV problem. In order to include the vertical 
dimension, a model named - is used. This latter was developed to describe the 
vertical distribution of suspended sediment in a flow corresponding to an unsteady 
and/or non-uniform state, and including deposition and resuspension phenomena 
(SANCHEZ, 2013). Results show that in some regions of the studied domain, the - 
model describing the vertical distribution of suspended sediment, can be simplified 
because its two parameters ( and ) remain constant. 
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1. Introduction 
Current 2DH hydrodynamic models allow applications on very long periods with fine 
geometric scale meshes. For these reasons, practical applications on real problems make 
extensive use of 2DH models. If the variables of the problem are properly integrated 
onto the vertical coordinate, the results of these models are close to those from the best 
3D models. In several types of problem, the vertical dimension can be considered in a 
realistic and precise manner by this way. Here are two examples: 
a) In the wave propagation models describing the vertical distribution of the velocity 

potential by Stokes-Airy theory (BERKHOFF, 1972). 
b) In hydrodynamic flow models that integrate onto the full depth the effect of shear 

stress on the mean flow velocities (SAINT-VENANT, 1871). 
Thanks to the - model, which was recently developed (SANCHEZ, 2013), an 
accurate description of the vertical distribution of sediment in the water column can be 
obtained. That enables the use of 2DH models for the simulation of sediment transport 
taking into account (i) aspects linked to a transitory state, (i) convective-diffusive 
vertical mixing, and (iii) solid exchanges with the bottom (sediment erosion and/or 
deposition). 
The first validations of the - model were carried out for unsteady states and low 
settling velocities W (0.05<W(mm s-1)<3.2), which characterizes fine sediments 
(SANCHEZ, 2013). Subsequently this model was successfully used to simulate the 
transport in suspension of sand and gravel, under cyclical hydrodynamic actions in a 
wide range of periods T (2.5<T(s)<∞), (SANCHEZ, 2014). 
The purpose of this article is to study the suspended sediment transport along a channel 
for non-uniform states. The studied configuration can represent either a river 
discharging into a lake or an estuary connected with a microtidal sea. 
 
2. Theory for an equilibrium state 
If the sedimentary state is uniform and steady, the vertical distribution of the suspended 
sediment concentration C is governed by: 

z

C
KCW z 


  (1) 

where W is the local mean value of the suspended sediment settling velocity, z is the 
vertical coordinate and Kz is the turbulent diffusion coefficient in the Oz direction. In 
the following equations it is assumed that the bottom is located at z=0. 
In this study, the physical magnitudes W and Kz are considered to be invariants with z. 
This hypothesis is a simplification of the problem widely used in practical applications. 
So, for a sedimentary equilibrium state, the expression for the concentration is: 
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where z°=z/d is the non dimensional vertical coordinate, d the depth and ∞ the Peclet 
number characterizing the vertical convection-diffusion sediment transfers: 

zK

dW
  (3) 

One usual relation to evaluate Kz retained for this study is: 

dUK cz 6


  (4) 

where Uc is the shear velocity and ≈0,4 the universal Karman constant.  
 
3. Presentation of the - model (SANCHEZ, 2013) 
Numerical tests carried out during the initial step of validation of the - model, show 
that the concentration C is not well represented by equation 2 for marked transitory 
hydrodynamic states, even when erosion and deposition are not observed. In agreement 
with the - model, for this specific case concerning transitory states, the concentration, 
which is then denoted C

~
, is correctly modeled by the following equation: 

)exp()0()(
~

 zCzC   (5) 
where  is a parameter whose value always trends to ∞ in accordance with a 
phenomenological model, which for a unidirectional 1DH flow (direction Ox), is written 
as: 
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where xV  is the vertical mean velocity of the flow in the Ox direction, and c≈0.667 is 
the coefficient of the model. 
In most cases, the modifications on the vertical concentration profile induced by 
deposition and erosion (see Figure 1), are more significant that that produced by the 
transitory state of the hydrodynamic variables. It is shown that in a general case the 
profile of C is well described by (SANCHEZ, 2013): 

))1(exp()exp()( 2 zzCzC R   (7) 

where CR is a reference concentration and  is a parameter of the model whose value 
always trends to ∞ in accordance with the following phenomenological model 
including a coefficient c: 
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where ∞ is the instantaneous terminal value of the parameter , which depends on the 
solid exchanges between the bed and the water column. These exchanges are 
parameterized by either the deposition rate Def (sediment sink term in kg m-2 s-1) or the 
erosion rate Eef (sediment source term in kg m-2 s-1). 
In what follows, the solid exchanges at the bottom are parameterized by a unique 
exchange rate Sef, which is equal to Def in case of deposition and to –Eef in case of 
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erosion. Moreover, a law by KRONE (1986) is generalized in order to define a non-
dimensional rate for the solid exchanges with the bed: 

)0(CW
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p

ef


  (9) 

It is shown (SANCHEZ, 2013) that  converges to ∞ and  to ∞ when the 
independent variables of the problem (Uc, xV , W and d) remain constant on time, 
provided that parameter p is also constant. In this case, border conditions linked to the 
solid exchanges at the bottom are exactly satisfied if: 

 p50.0  (10) 

Complementary, in case of erosion or without exchanges between the bed and the water 
column (p≤0): 

667.0c  (11) 

Finally, in case of deposition (p>0): 

  3.0667.0c  (12) 

 
4. Methods 
A version 1DH of the - model is applied to study the suspended sediment transport in 
a channel by a unidirectional 2DV flow. The imposed configuration for the channel is 
shown at the top of Figure 2. This channel comprises an erosion region between A and 
B, a deposition region downstream C, and between these two regions (between B and 
C) non erosion or deposition is considered. In the simulations, depth d=2 m and settling 
velocity W=0.001 m s-1, are kept constant. In addition, the hydrodynamic transitional 
phenomena near the discontinuities, are neglected. Table 1 summarizes the main 
parameters of the studied problem. 
 

 
Figure 1. Illustration of the effects of solid exchanges at the bottom on the vertical 
profile of the suspended sediment concentration. Dotted line: steady state profile. 

Thick line: profile observed during a deposition period. Thin line: profile observed 
during an erosion period (z°=0=bottom; z°=1=surface). 
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Table 1. Summary of hydrosedimentary parameters specific to the studied problem. 
 Upstream A Between A & B Between B & C Between C & D Downstream D 

Flow velocity xV  (m s-1) 1.28 1.28 0.64 0.32 0.32 

Shear velocity Uc (m s-1) 0.08 0.08 0.04 0.02 0.02 

Length (m) undefined 760 760 200 undefined 

Solid exchange rate, p 0 –1 0 +1 +1 

 

 

 

 

 
Figure 2. Presentation of results obtained from - model. 

Top: Sketch of the flow studied along a channel.  
2nd row: Evolution of  and ∞, parameters linked to the convective-diffusive mixing. 

3rd row: Evolution of  and ∞, parameters related to exchanges with the bed. 
Bottom: Concentrations reduced by the mean vertical concentration in A as a function 

of z°, which is shown in the Z-axis; results of - model are drawn in black line and the 
exponential distribution with alpha as the only parameter is plotted as a red dotted line. 
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5. Discussion of the obtained results 
Results obtained for the vertical distribution of the concentration are shown for the 
cross-sections A, B, C and D (Figure 2, bottom). 
The profile for the section A represents the border condition of the problem with an 
average value of C/ AC  equal to 1.00 (where AC  is the reference concentration 
upstream the section A). Results from - model (black line) are in agreement with the 
law defined by equation 2 for an equilibrium state (red dotted line). 
Due to the simulated erosion between A and B, the average value in B of C/ AC  reaches 
about 2.00. It is observed that the concentration at the bottom according to the - 
model is greater than that predicted by an equilibrium state equation and this is 
explained by a supply of sediment from the bed. The value of ∂C/∂z in z=0 is in 
accordance with the border condition for an erosion parameterized with p=-1. 
Between sections B and C a transport in suspension without erosion or deposition is 
imposed, so that the mean vertical value of C/ AC  remains constant. It gradually moves 
from a transitory profile downstream B to an equilibrium profile in C. In the point B 
shear velocity changes from 0.08 m s-1 to 0.04 m s-1, and this causes a redistribution of 
suspended sediments between B and C by increasing sediment accumulation near the 
bottom. Downstream C, an unhindered free settling is simulated to produce a 
progressive reduction of the suspended sediments in the flow direction. The vertical 
mean value of C/ AC  again becomes equal to 1.00 in section D, where it is verified that 
the vertical profile of the concentration according to the - model, with ∂C/∂z=0 in 
z=0, is compatible with the border condition for an unhindered deposition, which 
corresponds to p=+1. 
On row 2, Figure 2 shows the evolution of the parameters  and ∞, which characterize 
the convective-diffusive vertical transfers. On the one hand, changes in ∞ close to the 
flow discontinuities are associated with a locally non-uniform hydrodynamic state. On 
the other hand, it is noted that following the flow, the model parameter  always 
converges to its terminal value ∞. 
According to the phenomenological law for the variation of  (Eq. 6), if the 
independent variables of the problem (Uc, W and d) remain constant over time and along 
the flow, the time required to reach a steady state for the vertical distribution of 
suspended sediments from an arbitrary initial condition can be characterized by a time 
constant =d/(c×Uc), so that after a time t=4.6× it is observed that: 
(∞-)=(∞-init)/100, where init is the initial value of the parameter  (at t=0).  
In the case of a non-uniform steady flow as the one studied in this article, the path 
length  associated with a time t=4.6× is: 
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Finally, on row 3, Figure 2 shows the evolution of  and ∞, parameters related to 
sediment exchanges with the bed. It is observed that the model parameter  always 
converges to its terminal value ∞. Variations on ∞ are directly linked to variations in 
the parameter p characterizing these solid exchanges. With erosion or deposition from 
an arbitrary initial condition characterized by =init at t=0, the path length  required 
to observe a  value as (∞–)=(∞–init)/100, is: 
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For instance, we can cite a specific case with c=c=0,667 and xV /Uc=16, for which 
computations give ==110×d. 
 
6. Conclusion 
The numerical simulation carried out with the - model corresponding to a steady non-
uniform flow, shows that the bottom boundary condition related to solid exchanges 
(erosion and deposition) can adequately be described using Equation 7. 
If the parameter p characterizing the solid exchanges with the bed and the independent 
variables of the problem (Uc, W and d), all vary gradually along the flow, the vertical 
distribution of suspended sediment is correctly described using the following 
simplifications: ≈∞ and ≈∞. 
More precisely, if variations ∞ of the parameter ∞ along a length  following the 
flow are everywhere such as Abs(∞/∞)<<1, then everywhere ≈∞. 
In the same way, if variations ∞ of the parameter ∞ along a length  following the 
flow are everywhere such as Abs(∞/∞)<<1, then everywhere ≈∞. 
It should be noted that the expressions giving  and  (equations 13 and 14, 
respectively) are derived from this study. 
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